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ABSTRACT: Amethod for carrying out mechanical testing
on spherical microparticles (VersabeadsTM) has been eval-
uated using an incompressible viscoelastic finite element
model. The mechanical test is based on the compression of a
single bead fromwhich stress–strain data are obtained. Simu-
lations based on the finite element model are used to investi-
gate whether or not an apparent elastic modulus found as the
slope of the initial close to linear stress–strain curve can be
related to the real elastic modulus. The numerical results
indicate that the apparent modulus is in fact related to the
elastic shear modulus and that the relation Eapp � 4G can be
used to obtain the shear modulus from the mechanical test.

These results, however, only apply for purely elastic beads.
The finite element solution has also been compared to the
Hertz’s expression relating axial displacement and compres-
sion force. Good agreement with the Hertz’s expression is
obtained at axial displacements below 10% and fit of the
Hertz’s expression to simulated force–displacement curves
leads to a Hertz’s modulus that is equal to 4G. This is ex-
pected for incompressible materials. � 2006 Wiley Periodicals,
Inc. J Appl Polym Sci 102: 3037–3047, 2006
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INTRODUCTION

When a highly crosslinked polymer sample (rubber) is
strained, the initial stress–strain relationship is usually
linear. The proportionality factor, e.g., the elastic mod-
ulus, then gives an indication of the rigidity of the sam-
ple (see Refs. 1 and 2). To reduce the complexity of
defining and measuring the macroscopic stresses and
strains, the test samples are prepared in such a way
that their geometry is suitable for carrying out simple
mechanical tests such as simple shear (cubes) or shear
free experiments (elongation of long rods). However, it
is not always possible to produce test samples with
these geometries. In this work, an experimentalmethod
for measuring the mechanical properties of spherical
particles is investigated. The particles are polymer gel
beads (VersabeadsTM) that are used in synthesis and
purification steps in the pharmaceutical and biochem-
ical industry. The bead particles range from 40 to
700 mm in diameter and their chemical and mechanical
properties can be controlled through the preparation
conditions.3,4 The test method is based on uniaxial
compression of a single particle placed between two

planar surfaces. During the compression, the force and
the central lateral expansion are recorded. The purpose
of the test is to extract key material properties such as
the elastic modulus from the data collected during the
test. Similar studies have been carried out previously
by Andrei et al.,5 Knaebel et al.,6 and Liu et al.7 for
spherical gel particles swollen in water. In these works,
the classical theory of Hertz8 and also the extended
theory by Tatara9 were used on force–displacement
data from uniaxial compression of a single particle to
investigate material properties such as the elastic mod-
ulus and the Poisson’s ratio. However, for the experi-
mental method investigated in the present study it is
more desirable to obtain the elastic modulus from the
measured force and the central lateral expansion of the
bead because these data are obtained directly from the
test. This requires that a measure of the macroscopic
stress and strain can be found using these data and that
an elastic modulus is obtainable from the data. The
question is whether such an elastic modulus can be
related to the real elastic (or Young’s) modulus that is
necessary if the method is to be used as a reliable
means for characterizing the mechanical properties of
the beads. Furthermore, depending on the preparation
conditions, the elasticity of the beads can be varied
within a broad range. Also the presence of viscoelastic
effects has to be considered. In the presence of a solvent,
the VersabeadsTM can take up considerable amounts
of solvent (e.g., water) in which case the resultant
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swelling decreases the rigidity of the beads. Therefore,
it is also important to investigate to what extent the test
is applicable when beads are in a swollen state. To
investigate the compression experiment, a viscoelastic
finite element model based on the split Lagrangian–
Eulerian approach described by Harlen et al.10 is set up
and solved. An alternative technique would be to use
the Lagrangianmethod of Rasmussen.11,12

THEORY

In the limit of small axial displacements, the relation-
ship between the compression force F and the axial
displacement h for an elastic sphere compressed
between two flat smooth surfaces was solved by Hertz
in 1882.8 He derived the expression given in eq. (1).
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In eq. (1), h is the displacement (cf. Fig. 1), R0 is the ini-
tial radius, F is the measured force, and E* is the
Hertz’s modulus that is related to Young’s modulus by

E� ¼ E

1� n2

Here n is Poisson’s ratio equal to 0.5 for incompressible
materials. The Hertz’s expression is only valid for dis-
placements up to about 10% and furthermore it is only
valid for purely elastic materials.

To use eq. (1) to obtain the modulus the axial dis-
placement h must be known. However, we are inter-
ested in investigating whether there is a relationship
between the force and the central lateral expansion
D (cf. Fig. 1) and whether such a relationship can be
used to obtain the elastic modulus. We therefore
define the apparent macroscopic strain g(t) as

gðtÞ ¼ DðtÞ �D0

D0
(2)

Here D0 is the initial diameter of the bead. The
apparent macroscopic stress s(t) is then defined as
the ratio between the compressive force, F(t), and
the central lateral cross-sectional area, i.e.

sðtÞ ¼ FðtÞ
p
4 ½DðtÞ�2 (3)

When the stress s is depicted as a function of the strain
g using real measurement data, the curves generally
have the form sketched in Figure 2. As shown in the
figure, the initial part of the curve is close to linear and
therefore we define an apparent modulus Ea as the
slope of the initial part of the curve. To investigate
whether this apparent modulus is related to the real
elastic modulus, a finite element model is imple-
mented and solved. The results from this model are
then used to compare the model input modulus to the
apparent modulus obtained from simulated data.

Although the Hertz’s expression cannot be used
on our experimental data it can be used for verifica-
tion of force–displacement data obtained from our fi-
nite element model in the elastic limit.

Mathematical model

We now turn to the mathematical model used to
model the deformation. Here the notion of Bird
et al.13 is used. The beads are practically perfect
spheres and therefore the geometry to be modeled
has axial and radial symmetry. This means that only
a quarter of the cross section of a sphere needs to be
considered, cf. Figure 3. As time proceeds the axial
compression results in a radial expansion of the

Figure 1 Close up of the bead deformation during the
test [cf. Fig. 8)]. h(t) is the axial displacement at time t, _h is
the displacement velocity, D(t) it the central lateral diame-
ter at time t, and D0 is the initial diameter.

Figure 2 Sketch of a stress–strain curve and how Ea is
found.
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sphere. Locally, the position of each material point
can be calculated using displacement functions hav-
ing the form

r ¼ rðr0; z0; t0; tÞ z ¼ zðr0; z0; t0; tÞ

where r0 and z0 are initial positions at time t0. How-
ever, because we have chosen to solve the model using
a split Eulerian–Lagrangian method,10 the positions
are found from velocities by linear extrapolation:

r ¼ r0 þ vrDt z ¼ z0 þ vzDt

where Dt is the time step and r0 and z0 are positions from
the previous time step. The stresses are split into a
purely viscous part Tv and a purely elastic part Te. The
Mooney-Rivlin constitutive equation is used for the elas-
tic part that leads to the stress tensor given in eq. (4).14

t ¼ tv þ te ¼ �m _gþ G½ð1� qÞg½0� þ qg½0�� (4)

In eq. (4), _g is the rate of strain tensor, g[0] is the upper
convected relative strain tensor, g[0] is the lower con-
vected relative strain tensor, m is the viscosity, and G is
the shearmodulus. The parameter q determines the rel-
ative contribution to the elastic stress from each of the
strain tensors. If q ¼ 0, the elastic contribution reduces
to that of the Neohookean case. It is also noted that for
small strains, the Mooney-Rivlin equation reduces to
the constitutive equation for a Hookean spring because
both relative strain tensors tend toward the infinitesi-
mal strain tensor g ¼ !u þ (!u)T in the limit of small
displacement gradients (u is the position of a material
point relative to the initial position).13

Conservation of momentum is written in terms of
the equation of motion with inertia and gravity
neglected leading to

0 ¼ ½r � p� ¼ ½r � ðpdþ tÞ� (5)

In eq. (5), d is the unit tensor and p is the total stress
tensor. We assume that the beads are incompressible
and thus the equation of continuity is satisfied, i.e.

0 ¼ r � v (6)

To complete the model the boundary conditions
(BCs) are identified. In Figure 3(a) a sketch of the
initial undistorted geometry and the BCs can be
seen. It is noted that at the interface between the
sphere and the platen the no slip BC is applied, i.e.,
vr ¼ 0. Furthermore, it is assumed that pressures
and stresses balance at the free surface, which in the
case of negligible surface tension can be written as

½n � p� ¼ Pan (7)

where n is the outward directed normal vector on
the surface and Pa corresponds to the external pres-
sure. Because the pressure is determined up to the
addition of a constant, we choose the external pres-
sure to be Pa ¼ 0. This ‘‘natural’’ BC is used directly
in the finite element formulation of the problem.

Finite element formulation

The model is rewritten into its finite element formu-
lation (or weak formulation) by first multiplying the
equation of motion and the continuity equation with
a trial function f and integrating over the sphere
volume (O). This leads to eqs. (8) and (9).

0 ¼
Z
O
f½r � p� dO (8)

Figure 3 Sketch of the geometry at t ¼ t0 and t > t0. BCs
are also shown.
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0 ¼
Z
O
fðr � vÞ dO (9)

Because of axial symmetry, there is no y-dependence
for any of the variables. This means that the differ-
ential volume dO can be replaced by the differential
surface dS ¼ r dr dz. Equation 8 may be rewritten by
integrating by parts the highest order terms and
using the Gauss–Ostrogradskii divergence theorem.
This leads to eq. (10) that, for clarity, is written out
into its components.

0 ¼
Z
qS
f½drðprrnr þ pzrnzÞ þ dzðprznr þ pzznzÞ�r dr dz

�
Z
S

dr
qf
qr

prrrþ qf
qz

pzrrþ fpyy

� �

þ dz
qf
qr

przrþ qf
qz

pzzr
� �

dr dz ð10Þ

In eq. (10), dr and dz are the unit vectors in the r and
z direction, nr and nz are the components of the out-
ward directed normal vector on the free surface, and
qS corresponds to the free surface in the (r, z) plane.
From the natural BC stated earlier, it is clear that the
surface integral in 10 is zero (cf eq. (11)).

drðprrnr þ pzrnzÞ þ dzðprznr þ pzznzÞ ¼ ½n � p� ¼ 0 (11)

However, to solve the model it is still necessary to
specify the pressure (equal to 0) on the surface. The
finite element formulation of the model is thus given
by eqs. (9) and (10) with the surface integral in eq.
(10) being zero.

Discretization

We have chosen to discretize the domain using trian-
gular elements partly because of prior experience
with the triangular elements10 and because triangles
are well suited for filling up the computational do-
main under consideration, cf. Figure 3. Isoparametric
quadratic triangular elements are used for the veloc-
ities and positions and isoparametric linear triangles
are used for the pressures. This is a stable method
for Stokes flow problems.15 The variables are discre-
tized locally on each element using local interpola-
tion functions as shown in eq. (12).

vr ¼
X6
i¼1

Niv̂r;i vz ¼
X6
i¼1

Niûz;i p ¼
X3
i¼1

Lip̂i

z ¼
X6
i¼1

Niẑi r ¼
X6
i¼1

Nîri ð12Þ

In eq. (12), Ni is the value of the local quadratic
interpolation functions used for interpolating veloc-
ities and positions at local node i, whereas Li is the
value of the linear interpolation functions at local
node i used for interpolating the pressure. The varia-
bles with hats correspond to nodal values where the
nodes in an element can be seen in Figure 4.15 The
(arbitrary) trial functions f are chosen to be the
quadratic interpolation functions for the momentum
balance and the linear interpolation function for the
equation of continuity.

The terms that enter the relative strain tensors con-
sist of the displacement gradients that can be calcu-
lated explicitly from the (known) nodal positions (r̂)
and the local interpolation functions. The rr-compo-
nent of the relative strain tensor g[0] is discretized as

g½0�;rr ¼ 1� qr
qr0

� �2

þ qr
qz0

� �2
" #

’ 1�
X6
i¼1

qNi

qr0
r̂i

 !2

þ
X6
i¼1

qNi

qz0
r̂i

 !2
2
4

3
5

and similarly for the other components of g[0]. This
means that all contributions from the elastic stresses
can be moved to the RHS of the equation system.
However, we have experienced that this results in a
quite unstable system when elastic stresses are large
relative to the viscous contribution.

We believe that the explicit calculation of the elas-
tic stresses results in an ill-conditioned system when
the elastic stresses are large compared to the viscous
stresses. Therefore, some of the elastic terms from

Figure 4 Triangular element. l linear (pressure) nodes;
& quadratic (velocity) nodes. Numbers indicate local node
numbering.
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g[0] are split up using linear interpolation of posi-
tions in time, e.g.

qr
qr0

� �2

’ qr
qr0

� �
qr0

qr0
þ Dt

qvr
qr0

� �

’
X6
i¼1

qNi

qr0
r̂i

 ! X6
i¼1

qNi

qr0
r̂0i þ Dt

X6
i¼1

qNi

qr0
v̂ri

 !

Hence, these elastic terms now contain both implicit
and explicit parts. Because the terms in g[0] are gra-
dients of the initial positions (e.g., qr0/qr), these are
not split up and are just calculated explicitly. This,
however, results in an increasingly unstable system
as q increases (0 � q � 1).

After introducing discretized variables, the full sys-
tem is set up by calculating the integrals numerically
and summing the contributions from each node. This
leads to a system of 2Nv þ Np equations with 2Nv

þ Np unknowns (i.e., nodal velocities and pressures).
Here, Nv is the total number of velocity nodes and Np

is the total number of pressure nodes. Integration of
the discretized finite element equations is carried out
numerically by transforming the global coordinates
into local coordinates as explained in, e.g., Ref. 15.

Numerical procedure

The system of equations is solved for the nodal
velocities and pressures and then a step forward in
time is carried out by using the nodal velocities, i.e.

rnewi ¼ ri þ vr;iDt

znewi ¼ zi þ vz;iDt

Here, ri and zi are nodal (i) positions used in the last
calculation of velocities and positions and Dt is the
time step that needs to be relatively small so as to
avoid large errors accumulated from the first-order
time stepping procedure.

Convergence analysis

The convergence of the finite element scheme is
investigated for the velocities, pressure, and com-
pression force. Since no analytical solution exists for
the sphere geometry, the analysis is based on a refer-
ence solution obtained on a fine mesh with 3719 ele-
ments, cf. Figure 5. To compare solutions obtained
on coarser meshes with the reference solution, the
solution on the fine mesh is interpolated onto the
coarser meshes (with cubic spline interpolation). The
parameters used were chosen such that the dimen-
sionless number L defined in Results and Discussion
Section was L ¼ 102. Furthermore q ¼ 0.1 was used
in the analysis and the solution on the various

meshes was compared at 20% compression. In Fig-
ure 6 the error in the velocities can be seen. The
error is calculated as the 2-norm of the difference
between the interpolated reference solution and the
actual solution on each mesh normalized by the
number of nodes, i.e.

error ¼ 1

Nnodes

kvref � vk2
kvrefk2

(13)

From Figure 6, it is seen that third-order conver-
gence is obtained for the velocities. This is in agree-
ment with the expected order of convergence that is
O(hpþ1) where p is the interpolation order in the fi-
nite element scheme.15 In Figure 7 the error in the

Figure 5 Mesh with 3719 elements, 7620 velocity nodes,
and 1951 pressure nodes. (a) Geometry before start of sim-
ulation; (b) distorted geometry after simulation to 65%
axial displacement.
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pressure and the compression force can be seen. As
expected we obtain second-order convergence for
the pressure. Furthermore second-order convergence
is seen for the forces because both the pressure and
the velocities enter the calculation of the forces (see
next section) and the convergence is controlled by
the variable with the lowest convergence order.
Hence, the convergence analysis shows that the
expected convergence is obtained for all variables.

Calculation of the compression force

To calculate the compression force, we have imple-
mented a method described by Rasmussen and
Hassager.16 This method uses the discretized finite
element equations to calculate the force.

It is noted that the force in axial direction at z ¼ h
by definition is given by

F ¼
Z
Ac

pzzjz¼h dS ¼ 2p
Z
Gc

pzzjz¼h r dr dz (14)

Here, Ac is the part of the surface in contact with the
moving platen and Gc is the corresponding part of the
surface in the (r, z) plane. If fi, l 2[1,. . .,L] denote the
trial functions associated with nodes on the contact
interface then the sumof allfl equals one, i.e.,SL

l¼1 fl¼ 1.
Wemay therefore rewrite eq. (14) as

F ¼ 2p
XL
l¼1

Z
Tc

flpzzr dr dz (15)

From eq. (10) it is seen thatZ
qS
fðprznr þ pzznzÞr dr dz

¼
Z
S

qf
qr

prz þ qf
qz

pzz

� �
r dr dz ð16Þ

The contact surface between the sphere and the
moving platen is horizontal, thus at z ¼ h, nr ¼ 0,
and nz ¼ 1. Furthermore, no shear stresses exist on
the contact interface because of the no slip BC.
Hence, from eq. (16) it follows that

XL
l¼1

Z
Gc

flpzzr dr dz ¼
XL
l¼1

Z
Sc

qfl

qz
pzzr dr dz (17)

Here the domain of integration Sc corresponds to the
elements adjacent to the contact interface because
the trial functions fl are zero on all other elements.
Comparison of eqs. (15) and (17) leads to

F ¼ 2p
XL
l¼1

Z
Sc

qfl

qz
pzzr dr dz

¼ 2p
XL
l¼1

Z
Sc

qfl

qz
pþ qfi

qz
tzz

� �
r dr dz ð18Þ

Equation 18 is then used to calculate the force.

EXPERIMENTAL SETUP AND PROCEDURE

Now a short description of the experimental setup
and procedure for measuring stress–strain data is

Figure 6 Convergence analysis. 2-norm of the error in the
velocities versus a characteristic element side length. The
error is relative to a reference solution obtained on a fine
mesh (3719 elements). The slope for the error in vr is 2.78
and the slope for the error in vz is 2.70. For comparison a
reference line with a slope of 3 is also shown.

Figure 7 Convergence analysis. 2-norm of the error in the
pressure versus a characteristic element side length. Also
shown is the error in the compressive force. The error is
relative to a reference solution obtained on a fine mesh
(3719 elements). The slope for the error in p is 1.87 and the
slope for the error in F is 1.90. For comparison a reference
line with a slope of 2 is also shown.
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given. In Figure 8, a side view sketch of the setup
for the compression test can be seen. The bead (A) is
placed on a microscope slide (B) and the microscope
slide is placed on an inverted microscope (F). Using
the image from the microscope, the bead is placed
directly under a probe (C) that is connected to a lin-
ear DC actuator (D). The compression velocity is
thus controlled using the linear actuator. The load
applied to the bead during the test is measured
using a load cell consisting of a linear strain gauge
(E) that has a compliance of about 0.17 mm/m N. As
will be clear in later section, the magnitude of the
compressive force during a measurement is on the
m N scale, wherefore the compliance of the load cell
has to be taken into account if one needs to know
the compression velocity.

The load cell has a resolution of about 0.1 m N
and the central lateral diameter of the bead can be
determined with a resolution of about 1 mm. During
the test, the image output from the microscope is
recorded as a video sequence onto a computer that
makes it possible to measure the central lateral
expansion as a function of time in the subsequent
data handling (cf. Fig. 1).

As mentioned in the introduction section, the
beads will swell considerably when immersed into a
solvent and in fact the beads will be swollen in all
practical applications. Therefore, it is important to
know the mechanical properties in the swollen state,
which also means that it is necessary to be able to
carry out the compression test on single beads in the
swollen state. This is carried out by adding a drop
of solvent (usually water) on top of a bead and let-
ting it reach its equilibrium degree of swelling before
it is placed under the probe.

MATERIALS

The gel beads are supplied by VersaMatrix A/S and
consist of a crosslinked poly(ethylene glycol) (PEG)
network. The beads are synthesized from PEG mac-
romonomers having oxetane rings at each end (see
Ref. 3 for further details). The PEG macromonomers
range from 400 to 2000 g/mol and the resultant
beads are termed according to the size of the macro-
monomer type used in the synthesis. For example,
beads produced from the 400 g/mol macromonomer
are termed Versabead O400. A larger PEG macromo-
nomer results in a larger distance between crosslinks
in the final network, wherefore the rigidity of the
beads generally decreases as the precursor macromo-
nomer increases. This makes it possible to compare
experimental and simulated stress–strain data for a
range of experimentally obtained moduli.

RESULTS AND DISCUSSION

In this section we present and discuss simulations
and experimental measurements. It is noted that all
measurements were carried out on beads swollen to
their equilibrium in water at ambient temperature
(� 228C).

In Figure 5(a) a mesh of 3719 triangular elements
(7620 velocity nodes and 1951 pressure nodes) can
be seen. This is the fine mesh used in our simula-
tions. A coarser mesh with 959 elements (2010 veloc-
ity nodes and 526 pressure nodes) is used in some
simulations to save simulation time. In all simula-
tions, a time step of Dt ¼ 0.1 s is used, which was
found to be sufficiently small to avoid any appreci-
able error accumulation. Also an axial displacement
velocity of _h ¼ �0.1 s�1 R0 is used in all simulations,
which means that each time step corresponds to a
1% increase in axial displacement. In Figure 5(b) the
fine mesh can be seen at a 65% axial displacement.

Before the relationship between Ea and the shear
modulus G is investigated, an analysis of how the
stress–strain behavior changes while going from
purely viscous to purely elastic deformations is per-
formed. Therefore, simulations with varying relative
contributions from elastic and viscous forces are car-
ried out. For our geometry, we define a dimension-
less number L given in eq. (19). This ratio indicates
the magnitude of the elastic contribution to the
stresses relative to the viscous contribution.

L ¼ GR0

mð� _hÞ
(19)

In eq. (19), _h is the axial displacement velocity as
described in earlier section and R0 is the initial ra-
dius of the sphere. When L is small, viscous forces
dominate relative to the elastic forces and vice versa.

Figure 8 Sketch of the experimental setup: (F) inverted
microscope; (E) linear DC actuator and linear strain gauge,
(C) movable ‘‘probe’’ connected to the actuator (D); (A)
spherical particle � 100–700 mm in diameter (bead); (B)
microscope slide. The drawing is not to scale.
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By carrying out simulations with L increasing from
10�6 to 106 in decade steps, the flow regimes given
in Table I have been found. These simulations were
only carried out for deformations up to 40% because
of stability issues, which are discussed below.

As explained in earlier section, stability is gained
by splitting g[0] into an explicit and an implicit part;
however, problems arise when the flow approaches
the elastic limit. When L > 103 it is only possible to
carry out simulations for small axial displacements.
Also, when the Mooney-Rivlin parameter q is
increased (from 0) the instability increases. In Figure
9 curves indicating the stability limit for different
values of q are drawn. This figure is prepared by
carrying out simulations until instability sets in at
various values of L and q and then plotting the
points of instability as a function of L. This means
that the areas below the curves are stable while the
areas above the curves are unstable. The figure
shows that it is only possible to carry out close to
purely elastic simulations, L � 103, up to large dis-
placements (� 70%) when q ¼ 0. Therefore, a com-
promise between degree of elasticity and degree of
deformation has to be made if one needs to carry
out simulations with q > 0.

In Figure 10 examples of stress–strain curves from
each of the flow types can be seen. To compare these
curves with each other, the stresses are normalized by
the maximum stress in each of the simulations. The
curves show that the initial part of the curve is only
close to linear in the elastic case while it gets increas-
ingly nonlinear as viscous effects increase. Therefore,
the relation between the apparent modulus and shear
modulus is only investigated in the elastic limit. This
is done by carrying out simulations with all parame-
ters constant except the shear modulus and then mak-
ing a linear fit to the initial linear part of the curves.
The Hertz’s expression is also fitted to the correspond-
ing force–displacement data at low displacements to
obtain the Hertz’s modulus. The Hertz’s modulus can
be used as a means for checking the finite element
model because we assume in the finite element model
that the beads are incompressible. The Hertz’s modu-
lus is related to the shear modulus by

E� ¼ E

1� n2
¼ 2ð1þ nÞ

1� n2
G

This means that we expect the Hertz’s modulus to be
E* ¼ 4G. In Table II apparent moduli found from fits

to the initial linear part of simulated stress–strain
curves can be seen together with the Hertz’s moduli
obtained from the corresponding force–displacement
curves.

The results presented in Table II indicate that the
apparent modulus indeed is related to the shear
modulus because it scales with the shear modulus
approximately as Ea � 4G. Also the Hertz’s moduli
obtained from the stress–strain curves agree very
well with the expected relationship for incompressi-
ble materials, namely that E* ¼ 4G. The good agree-
ment obtained for the Hertz’s modulus indicates that

TABLE I
Type of Flow at Various Values of �

Viscous L 2 [0; 10�3]
Viscoelastic L 2 [10�3; 103]
Elastic L 2 [103; 1]

Figure 9 Area of stability for the sphere geometry at vari-
ous q values. The curves show at which axial displacement
instability sets in for various values of L. Areas below the
curves correspond to stable combinations of axial displace-
ment and L. Nine hundred fifty-nine elements, 2010 veloc-
ity nodes, and 526 pressure nodes were used in the simu-
lations.

Figure 10 Simulated stress–strain curves for different val-
ues of L. For each curve the stresses are normalized by the
maximum stress from each simulation (smax,i).
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our model in fact gives the correct force–displace-
ment behavior at least for small displacements
(�10%). If Ea � 4G it should be possible to simulate
stress–strain curves that agree with experimentally
obtained curves by determining Ea from the experi-
mental data and then using G ¼ Ea/4 as the input to
the model. This, of course, implies that the beads
behave as purely elastic bodies. In Figure 11 experi-
mentally obtained stress–strain data for a Versabead
O1000 are shown together with two simulations and
a linear fit to the initial part of the experimental data
points. The linear fit leads to Ea ¼ 4.89 MPa and
therefore G ¼ 4.89 MPa/4 ¼ 1.22 MPa is used as
input to the model. The simulation with the
Mooney-Rivlin parameter being q ¼ 0 shows a nice
agreement with the experimental data points at low
strains (g < 0.2). However, as the strain increases so
does the deviation between the simulated curve and
the experimental curve. This indicates that the beads
show some degree of strain hardening and therefore
simulations with various q parameters are carried
out. By trial and error, q ¼ 0.25 is found to give a
nice fit between experimental data and simulated
data. However, at large deformations it is not possi-
ble to carry out purely elastic simulations for q
¼ 0.25 due to instability (a strain g ¼ 0.5 corre-
sponds to an axial displacement of 69%). Therefore,
the simulations shown in Figure 11 were carried out
with L ¼ 50, i.e., viscous contribution is not negligi-
ble. Nevertheless the simulated curve with q ¼ 0.25
gives a nice fit to the experimental data, indicating
that the apparent modulus is a real modulus.

In Figure 12, experimental stress–strain data for
different types of beads can be seen together with
simulated curves. The shear moduli used in the sim-
ulations are estimated from the apparent moduli
found from the experimental data. In Table III pa-
rameters used in the simulations are listed. From
Figure 12 it is seen that the simulated curves agree
well with experimental data except for the Versa-

bead O400. In this case it was necessary to have a
very low L because of the high q-value needed. The
O400 simulated curve shows how the viscous contri-
butions dominate at low strains resulting in an
‘‘overshoot’’ of the stresses compared with the ex-
perimental data. The results in Figure 12 and Table
III indicate that the real beads behave as elastic
bodies because it is necessary to have a high L value
to get good agreement between simulated and ex-
perimental curves at low strains. Comparison of the
q-values necessary to obtain satisfactory agreement
between experimental and simulated data indicates

TABLE II
Ratio between the Apparent Modulus Found

from Linear Fit to Simulated Stress–Strain Data and
the Shear Modulus (Ea/G)

G (Pa) L Ea/G E*/G

102 103 3.93 4.20
103 104 3.89 4.01
104 105 3.88 4.00
105 106 3.88 4.00

Simulations are carried out for various values of the
shear modulus G while keeping the viscosity constant at m
¼ 1 Pa s. Also shown is E*/G. The fine mesh was used in
the simulations (3719 elements) and Ea was found by a lin-
ear least square fit for g 2 [0; 0.15]. The Hertz’s modulus
E* was found by fitting equation 1 to the force–displace-
ment data for h/D0 2 [1; 0.9], i.e. below 10% displacement.

Figure 11 Comparison between experimentally obtained
stress–strain data from a Versabead O1000 and simulated
data. The linear fit to the experimental data points for g
< 0.15 leads to Ea ¼ 4.89 MPa. G ¼ Ea/4 was used as the
input to the model. The radius of the bead was R0 ¼ 131 mm.
L¼ 50 was used in the simulations.

Figure 12 Comparison between experimentally obtained
stress–strain data and simulated data. The parameters
used in the simulations can be seen in Table III.
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that strain hardening effects increase with increasing
elastic modulus.

Because the pressure enters the calculation of the
axial compression force, it is interesting to investi-
gate how the pressure distribution differs for simula-
tions carried out with different values of q. In Figure
13 the pressure distribution for a simulation with L
¼ 100 can be seen at 65% displacement. In Figure
13(a) q ¼ 0 and it is seen that the largest pressure is
concentrated around the center of the contact inter-
face. In Figure 13(b) the pressure distribution can be
seen for a simulation with q ¼ 0.2. Again the largest
pressures are in the center of the contact interface.
However, when Figures 13(a and b) are compared it
is seen that the pressures are higher at the contact
interface in Figure 13(b) and that the pressure gradi-
ent is considerably larger in the latter case. This indi-
cates that the strain hardening effects result in an
increase in the pressure at the contact interface and
thereby increasing the compression forces.

CONCLUSIONS

A viscoelastic finite element model has been set up
and solved to investigate the compression of spheri-
cal polymer gel beads. The finite element method
used is stable for flows ranging from purely viscous
to close to purely elastic. However, the stability of
the method decreases for increasing values of the
Mooney-Rivlin parameter q. This means that simula-
tions carried out using q J 0.4 require a viscous
contribution to the stress that is unrealistic compared
to the elasticity of the beads to avoid instability.

Using simulated results at low strains (g < 0.15) it
has been found that an apparent modulus Ea can be
extracted from data obtained from a mechanical test
where the compression force and the central lateral
expansion are measured. The simulations indicate
that the apparent modulus is related to the shear
modulus approximately as Ea � 4G; however, the
method can only be used for elastic deformations. If
viscous effects are prominent the stress–strain curves
are nonlinear at small strains and thus the modulus

cannot easily be extracted. Comparison between
stress–strain curves obtained from real measure-
ments and simulations indicate that the beads
behave as elastic bodies with some degree of strain
hardening. As long as the strain hardening effects
are low, it is possible to simulate stress–strain curves
that agree well with real measurements, indicating
that the apparent modulus is a real measure of the
elastic modulus. The pressure distribution inside the
bead depends strongly on the Mooney-Rivlin param-
eter q. Example simulations with q ¼ 0 and q ¼ 0.2
show that the pressure gradient in the axial direction
is much larger in the latter case and that the pres-
sure is higher at the contact interface when q ¼ 0.2

TABLE III
Parameters used in the Simulated Curves

Shown in Figure 12

Bead type q G (MPa) m (MPa s) R0 (mm) L

O400 0.4 2.14 2.14 133 10
O1000 0.25 1.22 0.24 131 50
O1500 0.05 0.18 0.018 149 100
O2000 0.25 0.25 0.05 155 50

The viscosity is adjusted to obtain sufficient stability
while the shear modulus is estimated from the apparent
moduli found from the experimental data in Figure 12 (i.e.
G ¼ Ea/4).

Figure 13 Pressure distribution inside the bead at 65%
displacement. The pressure scale is relative to the maxi-
mum pressure for the simulation with q ¼ 0.2 (The maxi-
mum pressure is in the center of the contact interface, i.e.,
r ¼ 0 and z ¼ h.) The parameters used were G ¼ 105 Pa
and m ¼ 104 Pa s (L ¼ 100). (a) Pressure distribution when
q ¼ 0; (b) pressure distribution when q ¼ 0.2. The fine
mesh was used in the simulations.
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compared to q ¼ 0. This means that the increase in
compression force observed for increasing q-value
can partly be explained by an increase in the pres-
sure at the contact interface.
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